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« Die bisher besprochenen inferenzstatistischen Verfahren erlauben uns, aus einer
einfachen Zufallsstichprobe auf eine deskriptivstatistische Mal3zahl in einer Population

zU schlieRen:

« Falls wir uns fur den Mittelwert einer stetigen Variable in dieser Population

interessieren, ziehen wir eine einfache Zufallsstichprobe und berechnen ein
Konfidenzintervall fur pu.

« Falls wir uns fur die relative Haufigkeit einer Messwertauspragung einer diskreten

Variable in dieser Population interessieren, ziehen wir eine einfache

Zufallsstichprobe und berechnen ein Konfidenzintervall fur .

« Sehr haufig interessiert man sich in der Psychologie jedoch auch fur Unterschiede
zwischen mehreren Populationen.
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» Beispiel 1: Uns interessiert der Unterschied zwischen Psychologie- und BWL-
Student*innen in der durchschnittlichen (stetigen) Leistungsmotivation:
« Population 1: Psychologie-Student*innen

* Population 2: BWL-Student*innen

* Interessierender Unterschied: Xpsychotogie — Xwi

« Beispiel 2: Uns interessiert der Unterschied in der durchschnittlichen (stetigen)
Depressionsschwere zwischen depressiven Personen, die eine Psychotherapie erhalten
haben, und solchen, die keine Therapie erhalten haben:

* Population 1: Personen, die eine Therapie erhalten haben

« Population 2: Personen, die keine Therapie erhalten haben
* Interessierender Unterschied: Xr,.pqpie

Bemerkung:
Wofur der Stern * steht,

— X, ) besprechen wir spater
keineTherapie

« Beispiel 3: Uns interessiert der Unterschied in der durchschnittlichen (stetigen)
Matheleistung von Personen vor und nach einer Nachhilfestunde:
« Population 1: Personen vor der Nachhilfe
« Population 2: Die gleichen Personen nach der Nachhilfe
» Interessierender Unterschied: X, nher — Xnachher
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« Die drei Beispiele unterscheiden sich in der Art der Stichprobenziehung:

« Beispiel 1: Wir ziehen eine einfache Zufallsstichprobe aus der Population der
Psycholog*innen und eine einfache Zufallsstichprobe aus der Population der
BWLer*innen.

« Beispiel 2: Wir ziehen zunachst eine einfache Zufallsstichprobe aus der
Gesamtpopulation der depressiven Personen. Ein zufallig ausgewahlter Teil der
Personen in der Stichprobe erhalt eine Psychotherapie, der Rest nicht.

« Beispiel 3: Wir ziehen eine einfache Zufallsstichprobe aus der Gesamtpopulation
der Schiler*innen. Alle Personen in dieser Stichprobe erhalten Nachhilfe.

« Wir werden uns nun anschauen, wie wir diese drei Arten der Stichprobenziehung im
Rahmen der Wahrscheinlichkeitstheorie formalisieren konnen.




Lehrstuhl fir Psychologische Vorlesung
Methodenlehre und Diagnostik Statistische
der Ludwig-Maximilians- . . . . Methoden |
unversiatinchen || ZUFallsvariablen in Beispiel 1 | WS 25126

« In Beispiel 1 haben wir zwei einfache Zufallsstichproben und daher die gleiche Situation
wie im Fall von einer einzigen Population, nur eben zweimal:

« Wir haben eine Stichprobe von Psycholog*innen mit Stichprobenumfang n, und
Messwerte x;1, X2, ..., X1,,, die als Realisationen der Zufallsvariablen X;4, Xi,, ..., X1p,
aufgefasst werden konnen. x,, ist die Leistungsmotivation der ersten Person in der
Stichprobe der Psycholog*innen, x,, ist die Leistungsmotivation der zweiten Person in
der Stichprobe der Psycholog®innen, ..., x;,,, ist die Leistungsmotivation der n, - ten
Person in der Stichprobe der Psycholog*innen.

« Wir haben eine Stichprobe von BWLer*innen mit Stichprobenumfang n, und Messwerte
X1, X22, --+» X27,, di€ als Realisationen der Zufallsvariablen X,;, X;,, ..., X5,, aufgefasst
werden konnen. x,, ist die Leistungsmotivation der ersten Person in der Stichprobe der
BWLer*innen, x,, ist die Leistungsmotivation der zweiten Person in der Stichprobe der
BWLer*innen, ..., x,,, ist die Leistungsmotivation der n, - ten Person in der Stichprobe
der BWLer*innen.
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« Falls das Histogramm der Leistungsmotivation in beiden Populationen durch die
Wahrscheinlichkeitsdichtefunktion einer Normalverteilung approximiert werden kann, gilt
fur die Zufallsvariablen:

« Stichprobe der Psycholog*innen :Xlillj N(uy,0f)

« Stichprobe der BWLer*innen : Xzill(«iN(uz, o4

« Die Zufallsvariablen aus der Stichprobe der Psycholog*innen sind unabhangig von

den Zufallsvariablen aus der Stichprobe der BWLer*innen.

* uy entspricht dem Mittelwert Xpgycnoi0gie der Leistungsmotivation in der Population der

Psycholog*innen und of entspricht der empirischen Varianz sgmp psychologie J€T

Leistungsmotivation in der Population der Psycholog*innen.

* u, entspricht dem Mittelwert x5, der Leistungsmotivation in der Population der

BWLer*innen und o2 entspricht der empirischen Varianz sgmp sw der

Leistungsmotivation in der Population der BWLer*innen.
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Wir nehmen zusatzlich an, dass die empirischen Varianzen in der Population der
BWLer*innen und Psycholog*innen gleich sind, also sgmp Psychologie = Semp swi 9ilt.

Hieraus folgt, dass auch die Varianzen der Zufallsvariablen gleich sind,

also of = 0 = 0.

Die Plausibilitat dieser Annahme werden wir — genau wie die der
Normalverteilungsannahme — spater uberprufen.
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« Zusammengefast ist die Situation also wie folgt:

« Stichprobe der Psycholog*innen : Xun“('iN(ﬂp g?)

« Stichprobe der BWLer*innen : Xzill(«iN(uz, d?)

« Die Zufallsvariablen aus der Stichprobe der Psycholog*innen sind unabhangig von
den Zufallsvariablen aus der Stichprobe der BWLer*innen.

* py entspricht dem Mittelwert Xpsycnoi0gic der Leistungsmotivation in der Population der

Psycholog*innen und o2 entspricht der empirischen Varianz sgmp psychologie J€T
Leistungsmotivation in der Population der Psycholog*innen.

* U, entspricht dem Mittelwert x5, der Leistungsmotivation in der Population der
BWLer*innen und o2 entspricht der empirischen Varianz sgmp swy der
Leistungsmotivation in der Population der BWLer*innen.
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Der Unterschied Xpsychoiogie — Xswi ZWischen den Populationen der Psycholog*innen
und BWLer*innen in der durchschnittlichen Leistungsmotivation entspricht somit der
Parameterdifferenz u, — u,.

Falls wir Aussagen Uber Xpgychoiogie — Xpw treffen wollen, missen wir im Rahmen
inferenzstatistischer Verfahren zu Aussagen uber die Parameterdifferenz yu; — u,
gelangen.

« Wir werden in der heutigen Vorlesung besprechen, wie wir Schatzfunktionen und

Konfidenzintervalle fur u; — u, konstruieren knnen.
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In Beispiel 2 haben wir eine einfache Zufallsstichprobe, die wir nach der Ziehung zufallig
in eine Experimentalgruppe und eine Kontrollgruppe aufteilen:

Wir haben eine Stichprobe von Personen, die eine Psychotherapie erhalten haben, mit
Stichprobenumfang n; und Messwerte x;1, X1, ..., X1,,, die als Realisationen der
Zufallsvariablen X;,, X;,, ..., X;,, aufgefasst werden kdnnen. x,, ist die
Depressionsschwere der ersten Person in dieser Stichprobe, x,, ist die
Depressionsschwere der zweiten Person in dieser Stichprobe, ..., x;,, ist die
Depressionsschwere der n, - ten Person in dieser Stichprobe.

Wir haben eine Stichprobe von Personen, die keine Psychotherapie erhalten haben, mit
Stichprobenumfang n, und Messwerte x,;, x,3, ..., X2,, die als Realisationen der
Zufallsvariablen X,,, X5, ..., X5, aufgefasst werden konnen. x,, ist die
Depressionsschwere der ersten Person in dieser Stichprobe, x,, ist die
Depressionsschwere der zweiten Person in dieser Stichprobe, ..., x;,, ist die
Depressionsschwere der n, - ten Person in dieser Stichprobe.
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« Falls das Histogramm der Depressionsschwere in der Population mit Therapie und in
der Population ohne Therapie jeweils durch die Wahrscheinlichkeitsdichtefunktion einer

Normalverteilung approximiert werden kann, gilt fr die Zufallsvariablen:

+ Stichprobe mit Psychotherapie: XlilflgN(ul, of)

« Stichprobe ohne Psychotherapie: Xzilflde(uz, o%)

« Die Zufallsvariablen aus der Stichprobe der Personen mit Psychotherapie sind
unabhangig von den Zufallsvariablen aus der Stichprobe der Personen ohne
Psychotherapie.

*  uq entspricht dem Mittelwert x7,,,,4,,;. der Depressionsschwere in der Population der
Personen mit Therapie und o entspricht der empirischen Varianz sjmp Therapie d€T
Depressionsschwere in dieser Population.

* uy entspricht dem Mittelwert X inernerapie der Depressionsschwere in der Population

der Personen ohne Therapie und ¢ entspricht der empirischen Varianz
der Depressionsschwere in dieser Population.

2

Semp keineTherapie
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Wie in Beispiel 1 nehmen wir zusatzlich an, dass die empirischen Varianzen in beiden

. . . 2 _ 2 .
Populationen gleich sind, also s, rherapie = Semp keineTherapie 9ilt-

Hieraus folgt, dass auch die Varianzen der Zufallsvariablen gleich sind,

also of = 0 = 0.

Die Plausibilitat dieser Annahme werden wir — genau wie die der
Normalverteilungsannahme — spater uberprufen.
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« Wir haben also — trotz leicht unterschiedlicher Stichprobenziehung — die gleiche
Situation wie in Beispiel 1:

« Stichprobe mit Therapie: XlilgN(ul, o?)

« Stichprobe ohne Therapie: Xzilflde(uz, g?)

« Die Zufallsvariablen aus der Stichprobe mit Therapie sind unabhangig von den
Zufallsvariablen aus der Stichprobe ohne Therapie.

*  uq entspricht dem Mittelwert X7,.,4,; der Depressionsschwere in der Population der

Personen mit Therapie und o entspricht der empirischen Varianz sjmp Therapie d€T
Depressionsschwere in dieser Population.

* py entspricht dem Mittelwert X inernerapie der Depressionsschwere in der Population
der Personen ohne Therapie und o entspricht der empirischen Varianz

sezmp keineTherapie 9€F Depressionsschwere in dieser Population.
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* Der Unterschied X1p¢,qpie — Xkeinernerapie ZWisChen den Populationen mit und ohne
Therapie in der durchschnittlichen Depressionsschwere entspricht somit der
Parameterdifferenz yu; — u,.

- Falls wir Aussagen Uber X7,.rqpie — XkeineTherapie treffen wollen, missen wir im Rahmen
inferenzstatistischer Verfahren zu Aussagen uber die Parameterdifferenz

U, — U, gelangen.

« Wir werden in der heutigen Vorlesung besprechen, wie wir Schatzfunktionen und
Konfidenzintervalle fur u; — u, konstruieren konnen.
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In Beispiel 3 haben wir eine einfache Zufallsstichprobe von Schuler*innen mit
Stichprobenumfang n, bei denen wir zweimal — einmal vor der Nachhilfe und einmal

nach der Nachhilfe — die Matheleistung erfassen.

Wir haben Messwerte x4, x4, ..., X1, aller Schuler*innen vor der Nachhilfe, die als
Realisationen der Zufallsvariablen X;,, X;,, ..., X;,, aufgefasst werden kdnnen. x,, ist
die Matheleistung der ersten Schuler*in vor der Nachhilfe, x,, ist die Matheleistung der
zweiten Schuler*in vor der Nachhilfe, ..., x;,, ist die Matheleistung der n - ten Schuler*in
vor der Nachhilfe.

Wir haben Messwerte x,4, x,5, ..., X,,, der gleichen Schuler*innen nach der Nachhilfe,
die als Realisationen der Zufallsvariablen X,,, X,,, ..., X,, aufgefasst werden konnen.
X, Ist die Matheleistung der ersten Schuler*in nach der Nachhilfe, x,, ist die
Matheleistung der zweiten Schuler*in nach der Nachhilfe, ..., x,,, ist die Matheleistung
der n - ten Schuler*in nach der Nachhilfe.
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Falls das Histogramm der Matheleistung in beiden Populationen (Schiler*innen vor und
nach der Nachhilfe) durch die Wahrscheinlichkeitsdichtefunktion einer Normalverteilung
approximiert werden kann, gilt fur die Zufallsvariablen:

 Vor der Nachhilfe: Xlill(»jN(ul, ol

* Nach der Nachhilfe: Xzilflde(#z, 5)

« Die Zufallsvariablen vor der Nachhilfe sind nicht unabhangig von den
Zufallsvariablen nach der Nachhilfe, da es sich bei ihren Realisationen um
Messwerte der gleichen Personen handelt.

yq entspricht dem Mittelwert x,,,,,., der Matheleistung in der Population vor der
Nachbhilfe und of entspricht der empirischen Varianz sjmp vorher d€r Matheleistung in
dieser Population.

U, entspricht dem Mittelwert x,,,.nner der Matheleistung in der Population nach der
Nachbhilfe und o5 entspricht der empirischen Varianz sjmp nachher d€r Matheleistung in
dieser Population.
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« Obwohl die beiden Zufallsvariablen X;; und X,; flr jede Schuiler*in i abhangig sind, sind

die Differenzen

Xipiff = X1i — Xoi

fur jede Schuler*in i immer noch unabhangig, da wir die Schuler*innen im Rahmen
einer einfachen Zufallsstichprobe gezogen haben.
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Die Realisationen x; p;rf = x1; — x,; der Zufallsvariablen X; p;-r = X;; — X,; entsprechen
fur jede Schuler*in i der Differenz zwischen dem Messwert x;; vor der Nachhilfe und
dem Messwert x,; nach der Nachhilfe.

« Beispieldaten:

3
4
8
3
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 Fir die Zufallsvariablen X; p;¢f qilt:

iid
Xipifr ~ N(1 — t2, 055 5)

wobei agiff der empirischen Varianz der Differenz der Matheleistung vor und nach der

Nachhilfe in der Population entspricht. agiff entspricht also nicht der empirischen

Varianz der Matheleistung innerhalb der beiden Populationen.

* In diesem Fall hangen die inferenzstatistischen Verfahren nur von dem Parameter agiff
ab und wir miissen keine Annahme beziiglich der Gleichheit von ¢ und o7 treffen.
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Zusammengefasst ist die Situation also wie folgt:

iid
Xipirr ~ N(u1 — g2, Ul%iff)

yq entspricht dem Mittelwert x,,,,,., der Matheleistung in der Population vor der
Nachbhilfe.

U, entspricht dem Mittelwert x,,,.nne der Matheleistung in der Population nach der
Nachbhilfe.

agl.ff entspricht der empirischen Varianz der Differenz der Matheleistung vor und nach
der Nachhilfe in der Population.
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Der Unterschied X,rner — Xnachner ZWischen den Populationen der Schuler*innen vor
und nach der Nachhilfe in der durchschnittlichen Matheleistung entspricht somit der

Parameterdifferenz y, — u,.

Falls wir Aussagen Uber X,y ner — Xnachner treffen wollen, missen wir im Rahmen
inferenzstatistischer Verfahren zu Aussagen uber die Parameterdifferenz y; — u,

gelangen.

Konfidenzintervalle fur u; — u, konstruieren konnen.

Wir werden in der heutigen Vorlesung besprechen, wie wir Schatzfunktionen und
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In der Situation von Beispiel 1 und 2 liegen aufgrund der unterschiedlichen Personen in
den beiden Stichproben zwei unabhangige Stichproben vor.

In der Situation von Beispiel 3 liegen aufgrund der gleichen Personen in den beiden
Stichproben zwei abhangige Stichproben vor.

In beiden Situationen interessieren wir uns fur die Parameterdifferenz p; — u,.

Wir mussen jedoch je nach Situation aufgrund der unterschiedlichen Ausgangslage auf
unterschiedliche inferenzstatistische Verfahren zurtckgreifen.
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« Abhangige Stichproben entstehen in den meisten Fallen - wie in Beispiel 3 - durch
wiederholte Messung bei den gleichen Personen.

« Es konnen aber auch Stichproben mit unterschiedlichen Personen abhangig sein, falls
zum Beispiel Paare von Personen (z.B. Zwillingspaare) zufallig gezogen werden und
jeweils eine Person des Personenpaars der Stichprobe 1 und die andere Person der
Stichprobe 2 zugeordnet wird.

« Auch in diesem Fall wirde man inferenzstatistische Verfahren fur abhangige
Stichproben verwenden, weil zwei AV-Werte die zum gleichen Paar gehoren ,ahnlicher”
sein sollten als zwei AV-Werte von unterschiedlichen Paaren (genau wie im Fall mit
Messwiederholung).
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Bislang:

* Unterschiede zwischen Populationen

Jetzt:

* Punktschatzung von Parameterdifferenzen
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Punktschatzung von
Parameterdifferenzen
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Unabhangige Stichproben




Lehrstuhl fir Psychologische
Methodenlehre und Diagnostik
der Ludwig-Maximilians-
Universitat Minchen

Unabhangige Stichproben |

Vorlesung
Statistische
Methoden |
WS 25/26

« Ausgangssituation:

, iid
¢ X11’X12, ...,Xlnl mltXllNN(‘u.l,O-Z)

iid

© Xo1, X22, -y Xop, Mit Xy, ~ N (2, 0°)

 alle diese Zufallsvariablen sind unabhangig.

« Ziel: Erwartungstreue, effiziente und konsistente Schatzfunktion fur die

Parameterdifferenz yu; — u,
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« Wir wissen, dass wir u; und u, jeweils durch die Mittelwerte in den beiden Stichproben

schatzen konnen:;

S
Juy

_ 1
i, =X =—ZX
251 1 1, . 1i
=1
AU o
Uy = z—n2 2i
=1

 |dee: Wir verwenden die Differenz
XDiff = X1 - Xz

dieser beiden Schatzfunktionen als Schatzfunktion fur yu; — u,.

* Der Schatzwert fur u; — u, ware dann

Xpiff = X1 — X2

also einfach die Differenz der Mittelwerte der beiden Stichproben.
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» Erwartungswert von Xp;¢:

E(XDiff) = E(X1 - Xz) = E(X1) - E(Xz) =l — Uy

» Varianz von Xp;¢¢:

_ _ _ _ g? o°
Var(Xpirs) = Var(X; — X)) = Var(X,) + Var(X,) =+
1 Ny
« Standardfehler von Xp;¢:
_ _ - 52 o2
SE(XDiff) — SD(XDiff) = VaT(XDiff) = |— 44—
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o (Gutekriterien:

v' Xpirs ist erwartungstreu

v' Xpiry ist effizient (der Beweis ist mal wieder sehr schwierig)

v' Xpirs ist konsistent fiir n; = co und n, - oo
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« Obwohl wir uns primar fur u; — u, interessieren, werden wir im Folgenden auch eine
Schatzfunktion fiir a2 bendtigen.

- Da ¢? die Varianz in beiden Stichproben ist, kAmen als Schatzfunktion sowonhl

1 <&
SZ = ZX-—X 2
1 n1_1i=1( 11 1)

aus der ersten Stichprobe als auch

1 <&
Sz = ZX-—X 2
2 n2_1i=1( 21 2)

aus der zweiten Stichprobe in Betracht.
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Eine Schatzfunktion mit noch geringerem Standardfehler erhalt man jedoch, indem man

einen nach den Stichprobengrof3en n, und n, gewichteten Mittelwert aus diesen beiden

Schatzfunktionen bildet:

(ny—1)-Sf +(n, —1)- 53
ny+n, —2

2 —
Spool -

« Diese Schatzfunktion nennt man auch gepoolte Varianz.

 Als Schatzwert fiir a2 ergibt sich damit:

(nl—l)'512+(n2—1)-822
ng+n, —2

2 —
Spool -

v" Man kann zeigen, dass die Schatzfunktion Sﬁooz erwartungstreu, effizient und konsistent

fir o2 ist.
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Bemerkung: Fur gleiche Stichprobengrof3en n; = n, ergibt sich einfach der

ungewichtete Mittelwert von SZ und S5 :

, St + S%
Spool = 2
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Beispiel 1: Uns interessiert der Unterschied zwischen Psycholog*innen und
BWLer*innen in der durchschnittlichen Leistungsmotivation.

Wir ziehen zwei unabhangige einfache Zufallsstichproben:

« Stichprobe 1 aus der Population der Psycholog*innen mit Umfang n; = 101.

« Stichprobe 2 aus der Population der BWLer*innen n, = 51.

In diesem Fall entspricht die uns interessierende Differenz Xpgycnoi0gie — Xpw i der
Parameterdifferenz u; — u,.




Lehrstuhl fir Psychologische
Methodenlehre und Diagnostik
der Ludwig-Maximilians-
Universitat Minchen

Beispiel |l

Vorlesung
Statistische
Methoden |
WS 25/26

In der Stichprobe der Psycholog*innen erhalten wir eine durchschnittliche

Leistungsmotivation von X; = 165 und einen Schatzwert der Varianz von s# = 81.

In der Stichprobe der BWLer*innen erhalten wir eine durchschnittliche

Leistungsmotivation von ¥, = 170 und einen Schatzwert der Varianz von sz = 100.

Als Schatzwert fur yu, — u,, also fur den Unterschied zwischen Psycholog*innen und

BWLer*innen in der durchschnittlichen Leistungsmotivation, ergibt sich damit

2

Als Schatzwert fiir 62 ergibt sich:

(ny—1)-s?+Mmy,—1)-s5 (101-1)-81+(51—1)-100

Spool —

ng+n, —2

101 +51-2

= 87.33
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Abhangige Stichproben

#40
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« Ausgangssituation:

Xipifr = Xia

iid

— Xiy

Xipirr ~ N1 — p2, Ul%iff)

« Ziel: Erwartungstreue, effiziente und konsistente Schatzfunktion fur die

Parameterdifferenz yu; — u,
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« Auch fur abhangige Stichproben konnen wir als Schatzfunktion fur yu; — u, wieder

verwenden.

XDiff = X1 - Xz

« Der Schatzwert fur u; — u, ist damit auch hier einfach die Differenz

JzDiff = X1 — Xy

der Mittelwerte x; und X, in den beiden Stichproben.
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» Erwartungswert von Xp;¢:

E(XDiff) = E(X1 - Xz) = E(X1) - E(Xz) =l — Uy

» Varianz von Xp;¢¢ :

2
Opiff
Var(Xpisr) = Var( Exlmff> Var(E Xllef> 2Var(ximff)z T‘l

i=1

« Standardfehler von Xp;¢:

_ B — o2.
SE(Xpiss) = SD(Xpips) = Jvar(XDiff) = —D:lff
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Gutekriterien:

v' Xpirs ist erwartungstreu

v’ Xpiry ist effizient

v' Xpirs ist konsistent fiir n — oo

# 44
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« Obwohl wir uns primar fur u; — u, interessieren, werden wir im Folgenden auch eine
Schétzfunktion fiir o, bendtigen.

« Eine erwartungstreue, effiziente und konsistente Schatzfunktion fur agl.ff ist:

« Die Realisation dieser Schatzfunktion, also der Schatzwert fur agiff ist somit:

n
1 _ 2
2 —
Sbiff =71 Z(XiDiff — Xpifs)
i=1

n
1 2
2 _ —
Spiff = n_1 E (xiDiff - xDiff)
i=1
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« Beispieldaten:

X1i X2i
5 1
4 5
8 7
5 7
X1 =5.5 X, =5

« Der Schatzwert fur agiff ware in diesem Fall:

Xipiff — X1i

— X2j

n
1 _ 2 1
Shiff = mz("ww — Xpiff) =71 [(4—-0.5)2+(-1-0.5)2+(1-05)>+(-2-05)*]=7
i=1
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» Beispiel 3: Uns interessiert der Unterschied in der durchschnittlichen Matheleistung von

Schuler*innen vor und nach einer Nachhilfestunde.

« Wir ziehen eine einfache Zufallsstichprobe von n = 100 Schuler*innen.

« Wir erfassen die Matheleistung aller Schuler*innen in unserer Stichprobe mithilfe

eines Mathetests (hohere Werte im Test entsprechen einer hoheren

Matheleistung).

« Alle Schuler*innen in unserer Stichprobe erhalten Nachhilfeunterricht.

« Wir erfassen die Matheleistung aller Schuler*innen in unserer Stichprobe nochmals
mithilfe des Mathetests.

* In diesem Fall entspricht die uns interessierende Differenz X, ,her — Xnachner d€r
Parameterdifferenz yu; — u,.
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Vor der Nachhilfe erhalten wir in unserer Stichprobe eine durchschnittliche
Matheleistung von x; = 110.

Nach der Nachhilfe erhalten wir in unserer Stichprobe eine durchschnittliche
Matheleistung von x, = 100.

Als Schatzwert fur u; — u,, also fur den Unterschied in der durchschnittlichen
Matheleistung vor und nach der Nachhilfe, ergibt sich damit

Tpipr = % — X, = 110 — 100 = 10

Als Schéatzwert fir of; - erhalten wir:

Sgiff = 99
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Bislang:

* Unterschiede zwischen Populationen

* Punktschatzung von Parameterdifferenzen

Jetzt:

 Intervallschatzung von Parameterdifferenzen
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Intervallschatzung von
Parameterdifferenzen
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Unabhangige Stichproben
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Das Vorgehen bei der Konstruktion eines Konfidenzintervalls fur die Parameterdifferenz
Uy — U, bei unabhangigen Stichproben ist analog zur Konstruktion des Parameters u im
Fall von einer einzigen Population.

»  Wir gehen von der Schatzfunktion Xp,;-r = X; — X, aus.

 Wir z-standardisieren diese Schatzfunktion:

_ Xoigr — E(Xbirr) _ (Ka—X5) — (=)
— o2 o2
\/V“r(XDiff) /71 o

« Wir ersetzen alle unbekannten Parameter im Nenner durch die entsprechende
Schatzfunktion und erhalten so eine Zufallsvariable T:

Z

T — (X1_X2) — (U1—Uz)

2 2
[Spool + Spool

\] ny n,
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« Die Wahrscheinlichkeitsverteilung P dieser Zufallsvariable T ist genau bestimmbar:

T~tn; +n, —2)

« Wir kdnnen dann auf Basis dieser t-Verteilung die Quantile t« und t,_a berechnen, so

dass

f)(t% <T< tl_%g) =1—«a

2 2

« Dann setzen wir T ein und I6sen die Ungleichungen nach y; — u, auf:

P (Xl_)?z) - t

S2 I S2 I
2 e S — M2 S (X1—Xz) + 2

nq n,

S2 S2
ool ool
@ = -E =1l—-a
2 n1 le
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« Dies ergibt das zufallige Konfidenzintervall
Szool Szool Szool Szool
[(Xy, o Xn) = |(K1=Xp) —t,_a- [ 22+ ,(X1—X) +t, _a- [
nq np 2 \] nq n;
und das konkrete in unserer Stichprobe berechenbare Konfidenzintervall
2 2 g2 2
S S S
— — ool ool — — ool ool
[0y, %) = |(—%2) — t,_a- P2+ -2 (k%) + t, - p £
2 n, n; \] n, n;
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Beispiel 1: Uns interessiert der Unterschied zwischen Psycholog*innen und
BWLer*innen in der durchschnittlichen Leistungsmotivation.

Wir ziehen zwei unabhangige einfache Zufallsstichproben:

« Stichprobe 1 aus der Population der Psycholog*innen mit Umfang n; = 101.

« Stichprobe 2 aus der Population der BWLer*innen n, = 51.

In diesem Fall entspricht die uns interessierende Differenz Xpgycnoi0gie — Xpw i der
Parameterdifferenz u; — u,.
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In der Stichprobe der Psycholog*innen erhalten wir eine durchschnittliche

Leistungsmotivation von X; = 165 und einen Schéatzwert der Varianz von s# = 81.

In der Stichprobe der BWLer*innen erhalten wir eine durchschnittliche

Leistungsmotivation von ¥, = 170 und einen Schatzwert der Varianz von sz = 100.

Als Schatzwert fur yu, — u,, also fur den Unterschied zwischen Psycholog*innen und

BWLer*innen in der durchschnittlichen Leistungsmotivation, ergibt sich damit

2

Als Schatzwert fiir 62 ergibt sich:

(ny—1)-s?+Mmy,—1)-s5 (101-1)-81+(51—1)-100

Spool —

ng+n, —2

101 +51-2

= 87.33
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*  Wir wahlen ein Konfidenzniveau von 1 — a = 0.95. Wir suchen also t, _a = ¢t g7s.
2

v=n,+n,—2=1014+51-2=150

Damit konnen wir t; 975 in R berechnen:

> qt(0.975, 150)
[1] 1.975905

Also ist ty 975 = 1.98
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« Als konkretes Konfidenzintervall ergibt sich damit:
s2 s?2 s2 s2
I - _ %) — ¢t . pool n pool ’ v —%) 4+t . pool pool
(X1, e X) (X1—X3) 1_£2¥ \/ n 1, (X1—X3) 1__‘;‘ \] n 1,
_ |5 _ 195 87.33 N 87.33 £ 1198 [87.33 N 87.33
- ' 101 51 ° ' \[ 101 51
= [—8.18, —1.82]

* Die plausiblen Werte fur u; — u, und somit fur den Unterschied zwischen
Psycholog*innen und BWLer*innen in der durchschnittlichen Leistungsmotivation liegen
also zwischen -8.18 und -1.82.
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Abhangige Stichproben

# 59
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Auch bei abhangigen Stichproben ist das Vorgehen bei der Konstruktion eines
Konfidenzintervalls fur die Parameterdifferenz u; — u, analog zur Konstruktion des
Parameters u im Fall einer einzigen Population.

Wir gehen von der Schatzfunktion Xp;rr = X; — X, aus.

Wir z-standardisieren diese Schatzfunktion:

_ Xoigr = EXoipr) _ Ki=X5) — (a—pa)

\/V“T(XDiff) O-l%iff
,’ n

Wir ersetzen alle unbekannten Parameter im Nenner durch die entsprechende
Schatzfunktion und erhalten so eine Zufallsvariable T:

Z

_ (Xl_)?z) — (U1—H2)

2
SDiff
n

T
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Die Wahrscheinlichkeitsverteilung Pr dieser Zufallsvariable T ist genau bestimmbar:

T~t(n—1)

« Wir kdnnen dann auf Basis dieser t-Verteilung die Quantile t« und t,_a berechnen, so
2 2

dass

P(t%STStl_%)Zl—a

« Dann setzen wir T ein und I6sen die Ungleichungen nach u; — u, auf:

L S2. L S2.
Pl (X=%) -t a PP <y~ < X=X) 4+t a P2 ) =1-¢
1—5 n 1—7 n
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« Dies ergibt das zufallige Konfidenzintervall

1(Xq, ..

I(xq, ..

;Xn) = ()?1—)?2) —t _£2Z )

-;xn) — (fl_JEZ) — tl_% ’

) (fl_fz) + tl

Spiff
2 n

)
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Beispiel 3: Uns interessiert der Unterschied in der durchschnittlichen Matheleistung von
Schuler*innen vor und nach einer Nachhilfestunde.

Wir ziehen eine einfache Zufallsstichprobe von n = 100 Schuler*innen.

« Wir erfassen die Matheleistung aller Schuler in unserer Stichprobe mithilfe eines
Mathetests (hohere Werte im Test entsprechen einer hoheren Matheleistung).

« Alle Schuler*innen in unserer Stichprobe erhalten Nachhilfeunterricht.

« Wir erfassen die Matheleistung aller Schuler*innen in unserer Stichprobe nochmals
mithilfe des Mathetests.

In diesem Fall entspricht die uns interessierende Differenz x,,,her — Xnachner d€r
Parameterdifferenz yu; — u,.
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Vor der Nachhilfe erhalten wir in unserer Stichprobe eine durchschnittliche
Matheleistung von x; = 110.

Nach der Nachhilfe erhalten wir in unserer Stichprobe eine durchschnittliche
Matheleistung von x, = 100.

Als Schatzwert fur u; — u,, also fur den Unterschied in der durchschnittlichen
Matheleistung vor und nach der Nachhilfe, ergibt sich damit

Tpipr = % — X, = 110 — 100 = 10

Als Schatzwert fir of; - erhalten wir:

Sgiff = 99
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*  Wir wahlen ein Konfidenzniveau von 1 — a = 0.95. Wir suchen also t, _a = ¢t g7s.
2

v=n—-1=100—1=99

Damit konnen wir t; 975 in R berechnen:

> qt(0.975, 99)
[1] 1.984217

Also ist ty 975 = 1.98
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« Als konkretes Konfidenzintervall ergibt sich damit:

2 2
_ Spi _ Spi
[(xq, oy Xn) = 100, o, Xp) = [(1—%3) — t,_a - /ﬂ,(xl—xz) +t, a \E
2 n 2 n
=110 —-1.98 i 10+ 1.98 i
B ' 100’ ' 100

= [8.03,11.97]

« Die plausiblen Werte fur u; — u, und somit fur den Unterschied in der Population
zwischen Schuler*innen vor und nach der Nachhilfe in der durchschnittlichen
Matheleistung liegen also zwischen 8.03 und 11.97.
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Kausale Interpretation von
Parameterunterschieden
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In welchen der 3 Beispielen konnen wir die Schatzwerte und Konfidenzintervalle kausal

interpretieren?

Zur Erinnerung: Wenn es einen kausalen Einfluss der UV auf die AV gibt, sollte eine
Manipulation der UV zu einer Veranderung in der AV fuhren (aber nicht umgekehrt).

Beispiel 1: Schatzen xp;r und das entsprechende Kl den kausalen Effekt des

Studienfachs (BWL vs. Psychologie) auf die Leistungsmotivation?

Beispiel 2: Schatzen xp;r und das entsprechende Kl den kausalen Effekt der
Psychotherapie (Therapie vs. keine Therapie) auf die Depressionsschwere?

Beispiel 3: Schatzen xp; s und das entsprechende Kl den kausalen Effekt der

Nachhilfestunde (vorher vs. nachher) auf die Matheleistung?
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Beispiel 1: Schatzen xp;r und das entsprechende Kl den kausalen Effekt des
Studienfachs (BWL vs. Psychologie) auf die Leistungsmotivation?

Antwort: Nein

Das Studienfach ist nicht zufallig zugeteilt (sondern von den Personen selbst gewahlt).
Es wird viele Drittvariablen (U) geben, die sich kausal sowohl auf die Wahl des
Studienfachs, als auch auf die Leistungsmotivation auswirken.

Berucksichtigt man U in der statistischen Analyse (z.B. im Rahmen einer Multiplen
Linearen Regression; siehe Statistik 1) ist eine kausale Interpretation mit zusatzlichen
Annahmen eventuell doch moglich.

?
Studienfach > Leistungsmotivation

N~
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Beispiel 2: Schatzen xp; s und das entsprechende Kl den kausalen Effekt der
Psychotherapie (Therapie vs. keine Therapie) auf die Depressionsschwere?

Antwort: Ja

Weil die Personen zufallig zur Therapiegruppe zugeteilt wurden, ist damit
ausgeschlossen, dass Drittvariablen (U) vorliegen, die sich kausal sowohl auf die Gabe
der Therapie, als auch auf die Depressionsschwere auswirken kdonnen.

Das hier verwendete Studiendesign ist der Prototyp fur kontrollierte randomisierte
Studien (RCTs) in der Psychologie, Medizin und anderen empirischen Wissenschaften.

?
Therapie > Depressionsschwere

K,

Randomisierung
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Beispiel 3: Schatzen xp; s und das entsprechende Kl den kausalen Effekt der

Nachhilfestunde (vorher vs. nachher) auf die Matheleistung?

Antwort: Nein

Es wurden nur Personen betrachtet, die eine Nachhilfestunde bekommen haben. Wir
konnen zwar feststellen, inwiefern die durchschnittliche Matheleistung nach der
Nachhilfestunde hoher ist als vorher. Ob das wirklich (nur) an der Nachhilfestunde liegt
oder (auch) an anderen Dingen, die in der Zwischenzeit passiert sind, wissen wir aber
nicht. Dafur brauchten wir eine Kontrollgruppe, die keine Nachhilfestunde bekommt,
aber deren Matheleistung trotzdem zweimal gemessen wird.
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Was bedeutet der kausale Effekt in Beispiel 2 genau? ~Annahme: RCT, d.h. zufallige Zuteilung zur
Experimental- oder Kontrollgruppe

— % — % > Therapie keineTherapie
xTherapie _ xkeineTherapie - E(Xi o Xi )

. X, "7 Die Depressionsschwere der Person i, unter der Annahme dass sie eine

Psychotherapie bekommt.

. xjemeTherarie. bie Depressionsschwere der gleichen Person i, unter der Annahme dass

sie keine Psychotherapie bekommt.

xheravie _ ykeimeTherapie. per individuelle kausale Effekt der Person i. Gibt fiir jede

Person in der Population an, wie diese von der Therapie profitieren wirde. Kann nie
beobachtet werden, weil in der Realitat jede Person immer entweder Therapie
bekommt oder nicht.

o p(x/herapie _ yfemerieraviey. per durchschnittliche* kausale Effekt, gemittelt Giber alle
Personen in der Population. Diese Grolde wird in der Literatur als Average Treatment
Effect (ATE) bezeichnet. Im Gegensatz zu den individuellen Effekten, ist der ATE die
Art von kausalem Effekt, die in randomisierten kontrollierten Studien (RCTs) geschatzt
werden kann.
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Die Gro3e X7perapie — XkeineTherapie» 1€ WIr in Beispiel 2 geschatzt haben, bezieht sich
also auf eine hypothetische Population, in der alle Personen zufallig entweder Therapie
bekommen haben oder nicht. Diese Grolde schatzen wir, indem wir eine einfache
Zufallsstichprobe aus allen Personen ziehen und diese Personen dann zufallig
entweder der Experimental- oder der Kontrollgruppe zuweisen.

XTherapie — XkeineTherapie P€ZI€NL SiCh nicht auf die tatsachlichen Populationen von
Personen, die in der Realitat Therapie absolviert haben oder nicht. In der Realitat
werden Personen nicht zufallig zu einer Therapie zugeteilt, sondern entscheiden selbst,
ob Sie Psychotherapie machen oder nicht.

Zum Beispiel gibt es in Deutschland vermutlich sehr viel mehr Personen ohne
Psychotherapie also solche mit. AuRerdem entscheiden sich vermutlich mehr
depressive Personen fur eine Psychotherapie, sodass in der Realitat die mittlere
Depressionsschwere von Personen nach Psychotherapie vermutlich hoher ist als bei
zufalliger Zuteilung. Den tatsachlichen Mittelwertsunterschied konnten wir schatzen,
wenn wir eine einfache Zufallsstichprobe aus den Personen mit Therapie ziehen und
eine aus den Personen ohne. Die damit geschatzte deskriptivstatistische Grolie ware
allerdings theoretisch viel weniger interessant, weil Sie uns nicht die kausale
Fragestellung beantwortet, wie gut die Therapie wirkt.
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Fur Forschungsfragen sind haufig nicht nur Schatzungen einzelner Parameter
interessant, sondern auch Schatzungen von Parameterdifferenzen.

Falls Parameterdifferenzen u; — u, geschatzt werden sollen, muss man unterscheiden,
ob es sich um abhangige oder unabhangige Stichproben handelt.

Als Punktschatzung kann in beiden Fallen die erwartungstreue, effiziente und
konsistente Schatzfunktion X; — X, verwendet werden.

FUr eine Intervallschatzung konnen fur beide Falle jeweils Konfidenzintervalle
berechnet werden, die nach der gleichen Logik des Kis fur u aufgebaut sind.

Wird zuerst eine einfache Zufallsstichprobe aus der Population gezogen und dann jede
gezogene Person zufallig einer der beiden Gruppen der UV zugeteilt, kann u, — u, als
kausaler Effekt der diskreten UV auf die stetige AV interpretiert werden.

(Bemerkung: Eine Schatzung von Parameterdifferenzen m; — m, fur diskrete Merkmale
ist ebenfalls moglich. Entsprechende Konfidenzintervalle haben wir jedoch aus
Zeitgrunden nicht besprochen.)




